June 24, 2024
  • Steel, Z. et al. The global prevalence of common mental disorders: a systematic review and meta-analysis 1980–2013. Int. J. Epidemiol. 43, 476–493 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vigo, D., Thornicroft, G. & Atun, R. Estimating the true global burden of mental illness. Lancet Psychiatry 3, 171–178 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Kessler, R. C. et al. Age of onset of mental disorders: a review of recent literature. Curr. Opin. Psychiatry 20, 359–364 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ford, T., Collishaw, S., Meltzer, H. & Goodman, R. A prospective study of childhood psychopathology: independent predictors of change over three years. Soc. Psychiatry Psychiatr. Epidemiol. 42, 953–961 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Sadler, K. et al. Mental health of children and young people in England, 2017. Trends and characteristics. (2018).

  • Cuddy, E. & Currie, J. Treatment of mental illness in American adolescents varies widely within and across areas. Proc. Natl Acad. Sci. USA 117, 24039–24046 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Radež, J. et al. Why do children and adolescents (not) seek and access professional help for their mental health problems? A systematic review of quantitative and qualitative studies. Eur. Child Adolesc. Psychiatry 30, 183–211 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brody, C., Star, A. & Tran, J. Chat-based hotlines for health promotion: a systematic review. mHealth 6, 36 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mathieu, S. et al. Systematic Review: The State of Research into Youth Helplines. J. Am. Acad. Child. Adolesc. Psychiatry 60, 1190–1233 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Hoermann, S., McCabe, K., Milne, D. & Calvo, R. A. Application of Synchronous Text-Based Dialogue Systems in Mental Health Interventions: Systematic review. J. Med. Internet Res. 19, e267 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kramer, J., Conijn, B., Oijevaar, P. & Riper, H. Effectiveness of a Web-Based Solution-Focused brief chat treatment for depressed adolescents and young adults: randomized controlled trial. J. Med. Internet Res. 16, e141 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Erşahin, Z. & Hanley, T. Using text-based synchronous chat to offer therapeutic support to students: A systematic review of the research literature. Health Educ. J. 76, 531–543 (2017).

    Article 

    Google Scholar 

  • Eckert, M. et al. Acceptability and feasibility of a messenger-based psychological chat counselling service for children and young adults (“krisenchat”): A cross-sectional study. Internet Inter. 27, 100508 (2022).

    Article 

    Google Scholar 

  • Baldofski, S. et al. The impact of a Messenger-Based Psychosocial Chat Counseling Service on Further Help-Seeking among Children and young Adults: longitudinal study. JMIR Ment. Health 10, e43780 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cross, S., & Hickie, I. B. Transdiagnostic stepped care in mental health. Public Health Res Pract. 27 (2017).

  • Nadkarni, P. M., Ohno-Machado, L. & Chapman, W. W. Natural language processing: an introduction. J. Am. Med. Inform. Assoc. 18, 544–551 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, T., Schoene, A. M., Ji, S., & Ananiadou, S. Natural language processing applied to mental illness detection: a narrative review. Npj Digit. Med. 5, (2022).

  • Rumshisky, A. et al. Predicting early psychiatric readmission with natural language processing of narrative discharge summaries. Transl. Psychiatry 6, e921 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhong, Q. et al. Screening pregnant women for suicidal behavior in electronic medical records: diagnostic codes vs. clinical notes processed by natural language processing. BMC Med. Inform. Decis. Mak. 18 (2018).

  • Levis, M., Westgate, C. L., Gui, J., Watts, B. V. & Shiner, B. Natural language processing of clinical mental health notes may add predictive value to existing suicide risk models. Psychol. Med. 51, 1382–1391 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koleck, T. A. et al. Identifying symptom information in clinical notes using natural language processing. Nurs. Res. 70, 173–183 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Q. et al. Symptom-based patient stratification in mental illness using clinical notes. J. Biomed. Inform. 98, 103274 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Calvo, R. A., Milne, D., Hussain, M. S. & Christensen, H. Natural language processing in mental health applications using non-clinical texts. Nat. Lang. Eng. 23, 649–685 (2017).

    Article 

    Google Scholar 

  • Tanana, M. et al. How do you feel? Using natural language processing to automatically rate emotion in psychotherapy. Behav. Res. Methods 53, 2069–2082 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ryu, J. et al. A natural language processing approach to modelling treatment alliance in psychotherapy transcripts. BJPsych Open, 7, (2021).

  • Althoff, T., Clark, K. & Leskovec, J. Large-scale Analysis of Counseling Conversations: An application of natural language processing to Mental health. Trans. Assoc. Comput. Linguist. 4, 463–476 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pacula, M., Meltzer, T., Crystal, M., Srivastava, A., & Marx, B. P. Automatic detection of psychological distress indicators and severity assessment in crisis hotline conversations. Proc. IEEE Int. Conf. Acoust. (2014).

  • Xu, Z. et al. Detecting suicide risk using knowledge-aware natural language processing and counseling service data. Soc. Sci. Med. 283, 114176 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Pandey, S., Sharma, S. & Wazir, S. Mental healthcare chatbot based on natural language processing and deep learning approaches: Ted the therapist. Int. J. Inf. Technol. 14, 3757–3766 (2022).

    Google Scholar 

  • Bharti, U. et al. Medbot: Conversational Artificial Intelligence Powered Chatbot for Delivering Tele-Health after COVID-19. International Conference on Communication and Electronics Systems. (2020).

  • Denecke, K., Abd-Alrazaq, A., & Househ, M. Artificial intelligence for chatbots in mental health: opportunities and challenges. Multiple perspectives on artificial intelligence in healthcare: Opportunities and challenges, 115-128 (2021).

  • Efe, Z. et al. Who are Frequent Chatters? Characterization of Frequent Users in a 24/7 Messenger-Based Psychological Chat Counseling Service for Children and Adolescents. Internet. Interv. (2023).

  • Pirkis, J. et al. Frequent callers to telephone helplines: new evidence and a new service model. Int. J. Ment. Health Syst. 10, (2016).

  • Thapar, A. et al. Rutter’s Child and adolescent Psychiatry. Wiley eBooks. (2015).

  • Ryan, R., Berry, K. & Hartley, S. Review: Therapist factors and their impact on therapeutic alliance and outcomes in child and adolescent mental health – a systematic review. Child Adolesc. Ment. Health 28, 195–211 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Hornstein, S., Zantvoort, K., Lueken, U., Funk, B. & Hilbert, K. Personalization strategies in digital mental health interventions: a systematic review and conceptual framework for depressive symptoms. Front. Digit. Health 5, 1170002 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mohr, D. C. et al. A randomized noninferiority trial evaluating remotely-delivered stepped care for depression using internet cognitive behavioral therapy (CBT) and telephone CBT. Behav. Res. Ther. 123, 103485 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lundberg, S. & Lee, S. A unified approach to interpreting model predictions. Neural Inf. Process. Syst. 30, 4768–4777 (2017).

    Google Scholar 

  • Lundberg, S., Erion, G., & Lee, S. Consistent individualized feature attribution for tree ensembles. arXiv. (2018).

  • Mosca, E., Szigeti, F., Tragianni, S., Gallagher, D., & Groh, G. SHAP-based explanation methods: a review for NLP interpretability. Proceedings of the 29th International Conference on Computational Linguistics (2022).

  • Zantvoort, K., Scharfenberger, J., Boß, L., Lehr, D., & Funk, B. Finding the Best Match—a Case Study on the (Text-) Feature and Model Choice in Digital Mental Health Interventions. J. Healthc. Inform. Res. 1-33 (2023).

  • Cook, B. L. et al. Novel use of natural Language processing (NLP) to predict suicidal ideation and psychiatric symptoms in a Text-Based Mental Health intervention in Madrid. Comput. Math. Methods Med. 8708434, (2016).

  • Funk, B. et al. A framework for applying natural language processing in digital health interventions. J. Med. Internet Res. 22, e13855 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sajjadian, M. et al. Machine learning in the prediction of depression treatment outcomes: a systematic review and meta-analysis. Psychol. Med. 51, 2742–2751 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Vieira, S., Liang, X., Guiomar, R. & Mechelli, A. Can we predict who will benefit from cognitive-behavioural therapy? A systematic review and meta-analysis of machine learning studies. Clin. Psychol. Rev. 97, 102193 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Symons, M. et al. learning vs addiction therapists: A pilot study predicting alcohol dependence treatment outcome from patient data in behavior therapy with adjunctive medication. J. Subst. Abus. Treat. 99, 156–162 (2019).

    Article 

    Google Scholar 

  • Zhou, Q., Chen, Z., Cao, Y., & Peng, S. Clinical impact and quality of randomized controlled trials involving interventions evaluating artificial intelligence prediction tools: a systematic review. Npj Digit. Med. 4, (2021).

  • Biyani, P., Caragea, C., Mitra, P., & Yen, J. Identifying emotional and informational support in online health communities. International Conference on Computational Linguistics, 827–836 (2014).

  • Jiang, Z. et al. “Low-Resource” Text Classification: A Parameter-Free Classification Method with Compressors. Findings of the Association for Computational Linguistics. (2023).

  • Straw, I. & Callison-Burch, C. Artificial Intelligence in mental health and the biases of language based models. PLoS One 15, e0240376 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, I. W. et al. Gendered mental health stigma in masked language models. arXiv (2022).

  • Tianqi, C. & Carlos, G. XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 785–794 (2016)

  • Ramraj, S., Uzir, N., Sunil, R. & Banerjee, S. Experimenting XGBoost algorithm for prediction and classification of different datasets. IET Control Theory Appl 9, 651–662 (2016).

    Google Scholar 

  • Dietterich, T. G. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput 10, 1895–1923 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Head, T., Kumar, M., Nahrstaedt, H., Louppe, G., & Shcherbatyi, I. scikit-optimize/scikit-optimize: v0. 8.1. Zenodo. (2020).

  • Ojala, M., & Garriga, G. C. Permutation Tests for Studying Classifier Performance. J. Mach. Learn. Res. (2010).

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *