May 13, 2025
Brain connectivity correlates of the impact of a digital intervention for individuals with subjective cognitive decline on depression and IL-18
  • Ménard, C., Hodes, G. E. & Russo, S. J. Pathogenesis of depression: insights from human and rodent studies. Neuroscience 321, 138–162 (2016).

    Article 
    MATH 
    PubMed 

    Google Scholar 

  • Mitina, M., Young, S. & Zhavoronkov, A. Psychological aging, depression, and well-being. Aging (Albany NY). 12, 18765 (2020).

    Article 
    CAS 
    MATH 
    PubMed 

    Google Scholar 

  • World Health Organization. Depression and Other Common Mental Disorders: Global Health Estimates (World Health Organization, 2017).

  • Fiske, A., Wetherell, J. L. & Gatz, M. Depression in older adults. Ann. Rev. Clin. Psychol. 5, 363–389 (2009).

    Article 

    Google Scholar 

  • Al-Harbi, K. S. Treatment-resistant depression: Therapeutic trends, challenges, and future directions. Patient Prefer. Adher., 369–388 (2012).

  • Rush, A. J. et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR* D report. Am. J. Psychiatry. 163, 1905–1917 (2006).

    Article 
    MATH 
    PubMed 

    Google Scholar 

  • Nuñez, N. A. et al. Augmentation strategies for treatment resistant major depression: a systematic review and network meta-analysis. J. Affect. Disord. 302, 385–400 (2022).

    Article 
    PubMed Central 
    MATH 
    PubMed 

    Google Scholar 

  • Ma, L. Depression, anxiety, and apathy in mild cognitive impairment: current perspectives. Front. Aging Neurosci. 12, 9 (2020).

    Article 
    PubMed Central 
    MATH 
    PubMed 

    Google Scholar 

  • Gao, Y. et al. Retracted: depression as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. Int. J. Geriatr. Psychiatry. 28, 441–449 (2013).

    Article 
    MATH 
    PubMed 

    Google Scholar 

  • Formánek, T. et al. Trajectories of depressive symptoms and associated patterns of cognitive decline. Sci. Rep. 10, 20888 (2020).

    Article 
    PubMed Central 
    MATH 
    PubMed 

    Google Scholar 

  • Molinuevo, J. L. et al. Implementation of subjective cognitive decline criteria in research studies. Alzheimer’s Dement. 13, 296–311 (2017).

    Article 
    MATH 

    Google Scholar 

  • Röhr, S. et al. Estimating prevalence of subjective cognitive decline in and across international cohort studies of aging: a COSMIC study. Alzheimers Res. Ther. 12, 1–14 (2020).

    Article 
    MATH 

    Google Scholar 

  • Slot, R. E. et al. Subjective cognitive decline and rates of incident Alzheimer’s disease and non–Alzheimer’s disease dementia. Alzheimer’s Dement. 15, 465–476 (2019).

    Article 
    MATH 

    Google Scholar 

  • Davey, C. G., Pujol, J. & Harrison, B. J. Mapping the self in the brain’s default mode network. NeuroImage 132, 390–397 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Seeley, W. W. The salience network: a neural system for perceiving and responding to homeostatic demands. J. Neurosci. 39, 9878–9882 (2019).

    Article 
    CAS 
    PubMed Central 
    MATH 
    PubMed 

    Google Scholar 

  • Fox, M. et al. (ed, D.) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. 102 9673–9678 (2005).

    Article 
    ADS 
    CAS 
    PubMed Central 
    MATH 
    PubMed 

    Google Scholar 

  • Shi, L. et al. Brain networks of happiness: dynamic functional connectivity among the default, cognitive and salience networks relates to subjective well-being. Soc. Cognit. Affect. Neurosci. 13, 851–862 (2018).

    Article 
    MATH 

    Google Scholar 

  • Sha, Z., Wager, T. D., Mechelli, A. & He, Y. Common dysfunction of large-scale neurocognitive networks across psychiatric disorders. Biol. Psychiatry. 85, 379–388 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Kaiser, R. H., Andrews-Hanna, J. R., Wager, T. D. & Pizzagalli, D. A. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiatry. 72, 603–611 (2015).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Mulders, P. C., van Eijndhoven, P. F., Schene, A. H., Beckmann, C. F. & Tendolkar, I. Resting-state functional connectivity in major depressive disorder: a review. Neurosci. Biobehavioral Reviews. 56, 330–344 (2015).

    Article 

    Google Scholar 

  • Yun, J. Y. & Kim, Y. K. Graph theory approach for the structural-functional brain connectome of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry. 111, 110401 (2021).

    Article 
    CAS 
    MATH 
    PubMed 

    Google Scholar 

  • Alexopoulos, G. S. et al. Functional connectivity in the cognitive control network and the default mode network in late-life depression. J. Affect. Disord. 139, 56–65 (2012).

    Article 
    PubMed Central 
    MATH 
    PubMed 

    Google Scholar 

  • Posner, J. et al. Antidepressants normalize the default mode network in patients with dysthymia. JAMA Psychiatry. 70, 373–382 (2013).

    Article 
    PubMed Central 
    MATH 
    PubMed 

    Google Scholar 

  • Dichter, G. S., Gibbs, D. & Smoski, M. J. A systematic review of relations between resting-state functional-MRI and treatment response in major depressive disorder. J. Affect. Disord. 172, 8–17 (2015).

    Article 
    MATH 
    PubMed 

    Google Scholar 

  • Dunlop, K., Victoria, L. W., Downar, J., Gunning, F. M. & Liston, C. Accelerated brain aging predicts impulsivity and symptom severity in depression. Neuropsychopharmacology 46, 911–919 (2021).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Fulop, T. et al. Immunology of aging: The birth of inflammaging. Clin. Rev. Allergy Immunol., 1–14 (2021).

  • Shaw, A. C., Joshi, S., Greenwood, H., Panda, A. & Lord, J. M. Aging of the innate immune system. Curr. Opin. Immunol. 22, 507–513 (2010).

    Article 
    CAS 
    PubMed Central 
    MATH 
    PubMed 

    Google Scholar 

  • Alpert, A. et al. A clinically meaningful metric of immune age derived from high-dimensional longitudinal monitoring. Nat. Med. 25, 487–495 (2019).

    Article 
    CAS 
    PubMed Central 
    MATH 
    PubMed 

    Google Scholar 

  • Dinarello, C. A. Interleukin 1 and Interleukin 18 as mediators of inflammation and the aging process. Am. J. Clin. Nutr. 83, 447S–455S (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rea, I. M. et al. Age and age-related diseases: role of inflammation triggers and cytokines. Front. Immunol. 9, 334076 (2018).

    Article 
    MATH 

    Google Scholar 

  • Schumacher, B., Pothof, J., Vijg, J. & Hoeijmakers, J. H. The central role of DNA damage in the ageing process. Nature 592, 695–703 (2021).

    Article 
    ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Walker, K. A., Basisty, N., Wilson, D. M. & Ferrucci, L. Connecting aging biology and inflammation in the omics era. J. Clin. Investig. 132 (2022).

  • DiSabato, D. J., Quan, N. & Godbout, J. P. Neuroinflammation: the devil is in the details. J. Neurochem. 139, 136–153 (2016).

    Article 
    CAS 
    PubMed Central 
    MATH 
    PubMed 

    Google Scholar 

  • Allison, D. J. & Ditor, D. S. The common inflammatory etiology of depression and cognitive impairment: a therapeutic target. J. Neuroinflamm. 11, 1–12 (2014).

    Article 
    MATH 

    Google Scholar 

  • Lavretsky, H. & Newhouse, P. A. Stress, inflammation and aging. Am. J. Geriatric Psychiatry: Official J. Am. Association Geriatric Psychiatry. 20, 729 (2012).

    Article 
    MATH 

    Google Scholar 

  • Troubat, R. et al. Neuroinflammation and depression: A review. Eur. J. Neurosci. 53, 151–171 (2021).

    Article 
    CAS 
    MATH 
    PubMed 

    Google Scholar 

  • Corrigan, M., O’Rourke, A. M., Moran, B., Fletcher, J. M. & Harkin, A. Inflammation in the pathogenesis of depression: A disorder of neuroimmune origin. Neuronal Signal. 7 (2023).

  • Fan, N., Luo, Y., Ou, Y. & He, H. Altered serum levels of TNF-α, IL‐6, and IL‐18 in depressive disorder patients. Hum. Psychopharmacology: Clin. Experimental. 32, e2588 (2017).

    Article 

    Google Scholar 

  • Bai, S. et al. Efficacy and safety of anti-inflammatory agents for the treatment of major depressive disorder: a systematic review and meta-analysis of randomised controlled trials. J. Neurol. Neurosurg. Psychiatry. 91, 21–32 (2020).

    Article 
    MATH 
    PubMed 

    Google Scholar 

  • Spellman, T. & Liston, C. Toward circuit mechanisms of pathophysiology in depression. Am. J. Psychiatry. 177, 381–390 (2020).

    Article 
    PubMed Central 
    MATH 
    PubMed 

    Google Scholar 

  • (2023).

  • Bauer, M. E. & Teixeira, A. L. Inflammation in psychiatric disorders: what comes first? Ann. N. Y. Acad. Sci. 1437, 57–67 (2019).

    Article 
    ADS 
    CAS 
    MATH 
    PubMed 

    Google Scholar 

  • Golia, M. T. et al. Interplay between inflammation and neural plasticity: both immune activation and suppression impair LTP and BDNF expression. Brain. Behav. Immun. 81, 484–494 (2019).

    Article 
    CAS 
    MATH 
    PubMed 

    Google Scholar 

  • Yirmiya, R. & Goshen, I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain. Behav. Immun. 25, 181–213 (2011).

    Article 
    CAS 
    MATH 
    PubMed 

    Google Scholar 

  • Lynch, M. A. Age-related neuroinflammatory changes negatively impact on neuronal function. Front. Aging Neurosci. 1, 1206 (2010).

    Article 
    MATH 

    Google Scholar 

  • Kumar, A. Vol. 10, 413 (Frontiers Media SA, 2018).

  • Jessen, F. et al. The characterisation of subjective cognitive decline. Lancet Neurol. 19, 271–278 (2020).

    Article 
    PubMed Central 
    MATH 
    PubMed 

    Google Scholar 

  • Harvey, P. D. et al. Technology and mental health: state of the Art for assessment and treatment. Am. J. Psychiatry. 179, 897–914 (2022).

    Article 
    MATH 
    PubMed 

    Google Scholar 

  • Abbadessa, G. et al. Digital therapeutics in neurology. J. Neurol. 269, 1209–1224 (2022).

    Article 
    CAS 
    MATH 
    PubMed 

    Google Scholar 

  • Moshe, I. et al. Digital interventions for the treatment of depression: A meta-analytic review. Psychol. Bull. 147, 749 (2021).

    Article 
    MATH 
    PubMed 

    Google Scholar 

  • Amedi, A., Shelly, S., Saporta, N. & Catalogna, M. Perceptual learning and neural correlates of virtual navigation in subjective cognitive decline: A pilot study. Science (2024).

  • Aggius-Vella, E., Chebat, D. R., Maidenbaum, S. & Amedi, A. Activation of human visual area V6 during egocentric navigation with and without visual experience. Curr. Biol. 33, 1211–1219 (2023). e1215.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pascual-Leone, A., Amedi, A., Fregni, F. & Merabet, L. B. The plastic human brain cortex. J. R N. 28, 377–401 (2005).

    CAS 

    Google Scholar 

  • Bursky, M., Egglefield, D. A., Schiff, S. G., Premnath, P. & Sneed, J. R. Mindfulness-enhanced computerized cognitive training for depression: an integrative review and proposed model targeting the cognitive control and default-mode networks. Brain Sci. 12, 663 (2022).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Dunn, T. J. & Dimolareva, M. The effect of mindfulness-based interventions on immunity-related biomarkers: a comprehensive meta-analysis of randomised controlled trials. Clin. Psychol. Rev. 92, 102124 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Shields, G. S., Spahr, C. M. & Slavich, G. M. Psychosocial interventions and immune system function: a systematic review and meta-analysis of randomized clinical trials. JAMA Psychiatry. 77, 1031–1043 (2020).

    Article 
    MATH 
    PubMed 

    Google Scholar 

  • Cohen, C. I., Magai, C. & Yaffee, R. Walcott-Brown, L. Racial differences in syndromal and subsyndromal depression in an older urban population. Psychiatric Serv. 56, 1556–1563 (2005).

    Article 

    Google Scholar 

  • Briggs, R. G. et al. Parcellation-based tractographic modeling of the salience network through meta‐analysis. Brain Behav. 12, e2646 (2022).

    Article 
    PubMed Central 
    MATH 
    PubMed 

    Google Scholar 

  • Sandhu, Z. et al. Parcellation-based anatomic modeling of the default mode network. Brain Behav. 11, e01976 (2021).

    Article 
    MATH 
    PubMed 

    Google Scholar 

  • Ingersoll-Dayton, B., Torges, C. & Krause, N. Unforgiveness, rumination, and depressive symptoms among older adults. Aging Ment. Health. 14, 439–449 (2010).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Spinhoven, P., Drost, J., van Hemert, B. & Penninx, B. W. Common rather than unique aspects of repetitive negative thinking are related to depressive and anxiety disorders and symptoms. J. Anxiety Disord. 33, 45–52 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Wu, M. et al. Default-mode network connectivity and white matter burden in late-life depression. Psychiatry Research: Neuroimaging. 194, 39–46 (2011).

    Article 
    MATH 

    Google Scholar 

  • Zhou, Y. et al. Increased neural resources recruitment in the intrinsic organization in major depression. J. Affect. Disord. 121, 220–230 (2010).

    Article 
    MATH 
    PubMed 

    Google Scholar 

  • Kim, J. & Kim, Y. K. Crosstalk between depression and dementia with resting-state fMRI studies and its relationship with cognitive functioning. Biomedicines 9, 82 (2021).

    Article 
    CAS 
    PubMed Central 
    MATH 
    PubMed 

    Google Scholar 

  • Damoiseaux, J. S. et al. Reduced resting-state brain activity in the default network in normal aging. Cereb. Cortex. 18, 1856–1864 (2008).

    Article 
    CAS 
    MATH 
    PubMed 

    Google Scholar 

  • De Vogelaere, F., Santens, P., Achten, E., Boon, P. & Vingerhoets, G. Altered default-mode network activation in mild cognitive impairment compared with healthy aging. Neuroradiology 54, 1195–1206 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Brier, M. R. et al. Loss of intranetwork and internetwork resting state functional connections with Alzheimer’s disease progression. J. Neurosci. 32, 8890–8899 (2012).

    Article 
    CAS 
    PubMed Central 
    MATH 
    PubMed 

    Google Scholar 

  • Tumati, S., Martens, S., de Jong, B. & Aleman, A. Lateral parietal cortex in the generation of behavior: implications for apathy. Prog. Neurobiol. 175, 20–34 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Braga, R. M., Sharp, D. J., Leeson, C., Wise, R. J. & Leech, R. Echoes of the brain within default mode, association, and heteromodal cortices. J. Neurosci. 33, 14031–14039 (2013).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Shao, J. et al. Common and distinct changes of default mode and salience network in schizophrenia and major depression. Brain Imaging Behav. 12, 1708–1719 (2018).

    Article 
    MATH 
    PubMed 

    Google Scholar 

  • Van Tol, M. J. et al. Local cortical thinning links to resting-state disconnectivity in major depressive disorder. Psychol. Med. 44, 2053–2065 (2014).

    Article 
    MATH 
    PubMed 

    Google Scholar 

  • Connolly, C. G. et al. Resting-state functional connectivity of subgenual anterior cingulate cortex in depressed adolescents. Biol. Psychiatry. 74, 898–907 (2013).

    Article 
    PubMed Central 
    MATH 
    PubMed 

    Google Scholar 

  • Manoliu, A. et al. Insular dysfunction within the salience network is associated with severity of symptoms and aberrant inter-network connectivity in major depressive disorder. Front. Hum. Neurosci. 7, 930 (2014).

    Article 
    PubMed Central 
    MATH 
    PubMed 

    Google Scholar 

  • Chan, M. Y., Park, D. C., Savalia, N. K., Petersen, S. E. & Wig, G. S. Decreased segregation of brain systems across the healthy adult lifespan. Proc.Natl. Acad. Sci. 111, E4997–E5006 (2014).

  • Malagurski, B., Liem, F., Oschwald, J., Mérillat, S. & Jäncke, L. Functional dedifferentiation of associative resting state networks in older adults–a longitudinal study. NeuroImage 214, 116680 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Putcha, D., Ross, R. S., Cronin-Golomb, A., Janes, A. C. & Stern, C. E. Altered intrinsic functional coupling between core neurocognitive networks in Parkinson’s disease. NeuroImage: Clin. 7, 449–455 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Bossu, P. et al. Interleukin-18 produced by peripheral blood cells is increased in Alzheimer’s disease and correlates with cognitive impairment. Brain. Behav. Immun. 22, 487–492 (2008).

    Article 
    CAS 
    MATH 
    PubMed 

    Google Scholar 

  • Yamanishi, K. et al. Acute stress induces severe neural inflammation and overactivation of glucocorticoid signaling in interleukin-18-deficient mice. Translational Psychiatry. 12, 404 (2022).

    Article 
    CAS 
    PubMed Central 
    MATH 
    PubMed 

    Google Scholar 

  • Szabo, A. et al. Increased Circulating IL-18 levels in severe mental disorders indicate systemic inflammasome activation. Brain. Behav. Immun. 99, 299–306 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mehta, D. et al. Using polymorphisms in FKBP5 to define biologically distinct subtypes of posttraumatic stress disorder: evidence from endocrine and gene expression studies. Arch. Gen. Psychiatry. 68, 901–910 (2011).

    Article 
    CAS 
    PubMed Central 
    MATH 
    PubMed 

    Google Scholar 

  • Du, X. et al. Peripheral Interleukin-18 is negatively correlated with abnormal brain activity in patients with depression: a resting-state fMRI study. BMC Psychiatry. 22, 531 (2022).

    Article 
    CAS 
    PubMed Central 
    MATH 
    PubMed 

    Google Scholar 

  • Kaufman, E. & Lamster, I. B. The diagnostic applications of saliva—a review. Crit. Reviews Oral Biology Med. 13, 197–212 (2002).

    Article 
    MATH 

    Google Scholar 

  • Williamson, S., Munro, C., Pickler, R., Grap, M. J. & Elswick, R. Jr Comparison of biomarkers in blood and saliva in healthy adults. Nurs. Res. Pract. 246178 (2012).

  • Li, Y. et al. Normative dataset for plasma cytokines in healthy human adults. Data Brief. 35, 106857 (2021).

    Article 
    CAS 
    PubMed Central 
    MATH 
    PubMed 

    Google Scholar 

  • Conti, B. et al. Cultures of astrocytes and microglia express Interleukin 18. Mol. Brain Res. 67, 46–52 (1999).

    Article 
    CAS 
    MATH 
    PubMed 

    Google Scholar 

  • Kim, T. K. et al. Local interleukin-18 system in the basolateral amygdala regulates susceptibility to chronic stress. Mol. Neurobiol. 54, 5347–5358 (2017).

    Article 
    CAS 
    MATH 
    PubMed 

    Google Scholar 

  • Muscatell, K. A. et al. Greater amygdala activity and dorsomedial prefrontal–amygdala coupling are associated with enhanced inflammatory responses to stress. Brain. Behav. Immun. 43, 46–53 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Peng, X., Lau, W. K., Wang, C., Ning, L. & Zhang, R. Impaired left amygdala resting state functional connectivity in subthreshold depression individuals. Sci. Rep. 10, 17207 (2020).

    Article 
    ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Cullen, K. R. et al. Abnormal amygdala resting-state functional connectivity in adolescent depression. JAMA Psychiatry. 71, 1138–1147 (2014).

    Article 
    PubMed Central 
    MATH 
    PubMed 

    Google Scholar 

  • Fresco, D. M. & Mennin, D. S. All together now: utilizing common functional change principles to unify cognitive behavioral and mindfulness-based therapies. Curr. Opin. Psychol. 28, 65–70 (2019).

    Article 
    MATH 
    PubMed 

    Google Scholar 

  • Hallis, L., Cameli, L., Bekkouche, N. S. & Knäuper, B. Combining cognitive therapy with acceptance and commitment therapy for depression: a group therapy feasibility study. J. Cogn. Psychother. 31, 171–190 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Farras-Permanyer, L. et al. Age-related changes in resting-state functional connectivity in older adults. Neural Regeneration Res. 14, 1544–1555 (2019).

    Article 
    MATH 

    Google Scholar 

  • Edde, M., Leroux, G., Altena, E. & Chanraud, S. Functional brain connectivity changes across the human life span: from fetal development to old age. J. Neurosci. Res. 99, 236–262 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, J. S. et al. Distinct brain regions in physiological and pathological brain aging. Front. Aging Neurosci. 11, 147 (2019).

    Article 
    PubMed Central 
    MATH 
    PubMed 

    Google Scholar 

  • Jessen, F. et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimer’s Dement. 10, 844–852 (2014).

    Article 
    MATH 

    Google Scholar 

  • Yang, C. et al. Montreal cognitive assessment: Seeking a single cutoff score may not be optimal. Evid.-Based Complement. Altern. Med. 9984419 (2021). (2021).

  • Thomann, A. E., Berres, M., Goettel, N., Steiner, L. A. & Monsch, A. U. Enhanced diagnostic accuracy for neurocognitive disorders: a revised cut-off approach for the Montreal cognitive assessment. Alzheimers Res. Ther. 12, 1–10 (2020).

    Article 

    Google Scholar 

  • Amedi, A., Hofstetter, S., Maidenbaum, S. & Heimler, B. Task selectivity as a comprehensive principle for brain organization. Trends Cogn. Sci. 21, 307–310 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Amedi, A., Raz, N., Pianka, P., Malach, R. & Zohary, E. Early ‘visual’cortex activation correlates with superior verbal memory performance in the blind. Nat. Neurosci. 6, 758–766 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Feinberg, D. A. et al. Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PloS One. 5, e15710 (2010).

    Article 
    ADS 
    CAS 
    PubMed Central 
    MATH 
    PubMed 

    Google Scholar 

  • Moeller, S. et al. Multiband multislice GE-EPI at 7 Tesla, with 16‐fold acceleration using partial parallel imaging with application to high Spatial and Temporal whole‐brain fMRI. Magn. Reson. Med. 63, 1144–1153 (2010).

    Article 
    PubMed Central 
    MATH 
    PubMed 

    Google Scholar 

  • Whitfield-Gabrieli, S. & Nieto-Castanon, A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2, 125–141 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Behzadi, Y., Restom, K., Liau, J. & Liu, T. T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage 37, 90–101 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Glasser, M. F. et al. The human connectome project’s neuroimaging approach. 19, 1175–1187 (2016).

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *