Green, L. W. Making research relevant: if it is an evidence-based practice, where’s the practice-based evidence? Family Pract. 25, i20–i24 (2008).
Google Scholar
Berlin, J. A. & Golub, R. M. Meta-analysis as evidence: building a better pyramid. J. Am. Med. Assoc. 312, 603 (2014).
Google Scholar
Murad, M. H., Asi, N., Alsawas, M. & Alahdab, F. New evidence pyramid. Evid. Based Med. 21, 125–127 (2016).
Google Scholar
Tomlin, G. & Borgetto, B. Research pyramid: a new evidence-based practice model for occupational therapy. Am. J. Occup. Ther. 65, 189–196 (2011).
Google Scholar
Oliver, K. & Cairney, P. The dos and don’ts of influencing policy: a systematic review of advice to academics. Palgrave Commun. 5, 21 (2019).
Google Scholar
Sutton, A. J., Cooper, N. J. & Jones, D. R. Evidence synthesis as the key to more coherent and efficient research. BMC Med. Res. Methodol. 9, 29 (2009).
Google Scholar
Hunter, J. E. & Schmidt, F. L. Cumulative research knowledge and social policy formulation: the critical role of meta-analysis. Psychol. Public Policy Law 2, 324–347 (1996).
Google Scholar
Noar, S. M. In pursuit of cumulative knowledge in health communication: the role of meta-analysis. Health Commun. 20, 169–175 (2006).
Google Scholar
Cuijpers, P., Karyotaki, E., de Wit, L. & Ebert, D. D. The effects of fifteen evidence-supported therapies for adult depression: a meta-analytic review. Psychother. Res. 30, 279–293 (2020).
Google Scholar
Öst, L.-G., Riise, E. N., Wergeland, G. J., Hansen, B. & Kvale, G. Cognitive behavioral and pharmacological treatments of OCD in children: a systematic review and meta-analysis. J. Anxiety Disord. 43, 58–69 (2016).
Google Scholar
McLean, C. P., Levy, H. C., Miller, M. L. & Tolin, D. F. Exposure therapy for PTSD: a meta-analysis. Clin. Psychol. Rev. 91, 102115 (2022).
Google Scholar
Smith, M. L. & Glass, G. V. Meta-analysis of psychotherapy outcome studies. Am. Psychol. 32, 752–760 (1977).
Google Scholar
Leichsenring, F., Steinert, C., Rabung, S. & Ioannidis, J. P. A. The efficacy of psychotherapies and pharmacotherapies for mental disorders in adults: an umbrella review and meta‐analytic evaluation of recent meta‐analyses. World Psychiat. 21, 133–145 (2022).
Google Scholar
Cipriani, A. et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet 391, 1357–1366 (2018).
Google Scholar
Kirsch, I. & Jakobsen, J. C. Network meta-analysis of antidepressants. Lancet 392, 1010 (2018).
Google Scholar
Wampold, B. E. et al. A meta-analysis of outcome studies comparing bona fide psychotherapies: empirically, ‘all must have prizes’. Psychol. Bull. 122, 203–215 (1997).
Google Scholar
Rind, B., Tromovitch, P. & Bauserman, R. A meta-analytic examination of assumed properties of child sexual abuse using college samples. Psychol. Bull. 124, 22–53 (1998).
Google Scholar
Ioannidis, J. P. A. The mass production of redundant, misleading, and conflicted systematic reviews and meta-analyses: mass production of systematic reviews and meta-analyses. Milbank Q. 94, 485–514 (2016).
Google Scholar
Gloaguen, V., Cottraux, J. & Cucherat, M., Ivy-Marie Blackburn. A meta-analysis of the effects of cognitive therapy in depressed patients. J. Affect. Disord. 49, 59–72 (1998).
Google Scholar
Wampold, B. E., Minami, T., Baskin, T. W. & Callen Tierney, S. A meta-(re)analysis of the effects of cognitive therapy versus ‘other therapies’ for depression. J. Affect. Disord. 68, 159–165 (2002).
Google Scholar
Macnamara, B. N. & Burgoyne, A. P. Do growth mindset interventions impact students’ academic achievement? A systematic review and meta-analysis with recommendations for best practices. Psychol. Bull. (2022).
Google Scholar
Burnette, J. L. et al. A systematic review and meta-analysis of growth mindset interventions: for whom, how, and why might such interventions work? Psychol. Bull. (2022).
Google Scholar
Cuijpers, P., Karyotaki, E., Reijnders, M. & Ebert, D. D. Was Eysenck right after all? A reassessment of the effects of psychotherapy for adult depression. Epidemiol. Psychiat. Sci. 28, 21–30 (2019).
Google Scholar
Munder, T. et al. Is psychotherapy effective? A re-analysis of treatments for depression. Epidemiol. Psychiat. Sci. 28, 268–274 (2019).
Google Scholar
Cristea, I. A. et al. The effects of cognitive behavioral therapy are not systematically falling: a revision of Johnsen and Friborg (2015). Psychol. Bull. 143, 326–340 (2017).
Google Scholar
Jones, E. B. & Sharpe, L. Cognitive bias modification: a review of meta-analyses. J. Affect. Disord. 223, 175–183 (2017).
Google Scholar
Cuijpers, P., Miguel, C., Papola, D., Harrer, M. & Karyotaki, E. From living systematic reviews to meta-analytical research domains. Evid. Based Ment. Health (2022).
Google Scholar
Elliott, J. H. et al. Living systematic review: 1. Introduction — the why, what, when, and how. J. Clin. Epidemiol. 91, 23–30 (2017).
Google Scholar
Simonsohn, U., Simmons, J. & Nelson, L. D. Above averaging in literature reviews. Nat. Rev. Psychol. 1, 551–552 (2022).
Google Scholar
Aromataris, E. et al. Summarizing systematic reviews: methodological development, conduct and reporting of an umbrella review approach. Int. J. Evidence-based Healthc. 13, 132–140 (2015).
Google Scholar
Papatheodorou, S. Umbrella reviews: what they are and why we need them. Eur. J. Epidemiol. 34, 543–546 (2019).
Google Scholar
Rebar, A. L. et al. A meta-meta-analysis of the effect of physical activity on depression and anxiety in non-clinical adult populations. Health Psychol. Rev. 9, 366–378 (2015).
Google Scholar
Chambless, D. L. & Hollon, S. D. Defining empirically supported therapies. J. Consult. Clin. Psychol. 66, 7–18 (1998).
Google Scholar
Tolin, D. F., McKay, D., Forman, E. M., Klonsky, E. D. & Thombs, B. D. Empirically supported treatment: recommendations for a new model. Clin. Psychol. Sci. Pract. 22, 317–338 (2015).
Donnelly, C. A. et al. Four principles for synthesizing evidence. Nature 558, 361–364 (2018).
Google Scholar
Platt, J. R. Strong inference: certain systematic methods of scientific thinking may produce much more rapid progress than others. Science 146, 347–353 (1964).
Google Scholar
McGuire, W. J. A perspectivist approach to theory construction. Pers. Soc. Psychol. Rev. 8, 173–182 (2004).
Google Scholar
Lilienfeld, S. O. in Oxford Research Encyclopedia Of Psychology (ed. Beck, J. G.) 1–20 (Oxford Univ. Press, 2017).
Przeworski, A., Peterson, E. & Piedra, A. A systematic review of the efficacy, harmful effects, and ethical issues related to sexual orientation change efforts. Clin. Psychol. Sci. Pract. 28, 81–100 (2021).
Google Scholar
IJzerman, H. et al. Use caution when applying behavioural science to policy. Nat. Hum. Behav. 4, 1092–1094 (2020).
Google Scholar
Lilienfeld, S. O. Psychological treatments that cause harm. Perspect. Psychol. Sci. 2, 53–70 (2007).
Google Scholar
Schechinger, H. A., Sakaluk, J. K. & Moors, A. C. Harmful and helpful therapy practices with consensually non-monogamous clients: toward an inclusive framework. J. Consult. Clin. Psychol. 86, 879–891 (2018).
Google Scholar
Tipton, E., Pustejovsky, J. E. & Ahmadi, H. A history of meta-regression: technical, conceptual, and practical developments between 1974 and 2018. Res. Synth. Meth. 10, 161–179 (2019).
Google Scholar
Moeyaert, M. et al. Methods for dealing with multiple outcomes in meta-analysis: a comparison between averaging effect sizes, robust variance estimation and multilevel meta-analysis. Int. J. Soc. Res. Methodol. 20, 559–572 (2017).
Google Scholar
Cheung, M. W.-L. Modeling dependent effect sizes with three-level meta-analyses: a structural equation modeling approach. Psychol. Meth. 19, 211–229 (2014).
Google Scholar
Konstantopoulos, S. Fixed effects and variance components estimation in three-level meta-analysis: three-level meta-analysis. Res. Synth. Meth. 2, 61–76 (2011).
Google Scholar
Hedges, L. V. A random effects model for effect sizes. Psychol. Bull. 93, 388–395 (1983).
Google Scholar
Tipton, E., Pustejovsky, J. E. & Ahmadi, H. Current practices in meta-regression in psychology, education, and medicine. Res. Synth. Meth. 10, 180–194 (2019).
Google Scholar
Gronau, Q. F., Heck, D. W., Berkhout, S. W., Haaf, J. M. & Wagenmakers, E.-J. A primer on Bayesian model-averaged meta-analysis. Adv. Meth. Pract. Psychol. Sci. 4, (2021).
Bryan, C. J., Tipton, E. & Yeager, D. S. Behavioural science is unlikely to change the world without a heterogeneity revolution. Nat. Hum. Behav. 5, 980–989 (2021).
Google Scholar
Linden, A. H. & Hönekopp, J. Heterogeneity of research results: a new perspective from which to assess and promote progress in psychological science. Perspect. Psychol. Sci. 16, 358–376 (2021).
Google Scholar
Borenstein, M., Higgins, J. P. T., Hedges, L. V. & Rothstein, H. R. Basics of meta-analysis: I2 is not an absolute measure of heterogeneity. Res. Synth. Meth. 8, 5–18 (2017).
Google Scholar
Tipton, E. et al. Why meta-analyses of growth mindset and other interventions should follow best practices for examining heterogeneity. Psychol. Bull. (in the press).
Sakaluk, J. K., Kim, J., Campbell, E., Baxter, A. & Impett, E. A. Self-esteem and sexual health: a multilevel meta-analytic review. Health Psychol. Rev. (2019).
Google Scholar
Aczel, B. et al. Consensus-based guidance for conducting and reporting multi-analyst studies. eLife 10, e72185 (2021).
Google Scholar
Hunter, J. E. & Schmidt, F. L. Dichotomization of continuous variables: the implications for meta-analysis. J. Appl. Psychol. 75, 334–349 (1990).
Google Scholar
Rosenthal, R. The file drawer problem and tolerance for null results. Psychol. Bull. 86, 638–641 (1979).
Google Scholar
Sterne, J. A. C. et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. Br. Med. J. 343, d4002–d4002 (2011).
Google Scholar
Hunter, J. E. & Schmidt, F. L. Methods of Meta-analysis: Correcting Error and Bias in Research Findings (Sage, 2004).
Stanley, T. D. & Doucouliagos, H. Meta-regression approximations to reduce publication selection bias. Res. Synth. Meth. 5, 60–78 (2014).
Google Scholar
Iyengar, S. & Greenhouse, J. B. Selection models and the file drawer problem. Stat. Sci. 3, 109–135 (1988).
Carter, E. C., Schönbrodt, F. D., Gervais, W. M. & Hilgard, J. Correcting for bias in psychology: a comparison of meta-analytic methods. Adv. Meth. Pract. Psychol. Sci. 2, 115–144 (2019).
Google Scholar
McShane, B. B., Böckenholt, U. & Hansen, K. T. Adjusting for publication bias in meta-analysis: an evaluation of selection methods and some cautionary notes. Perspect. Psychol. Sci. 11, 730–749 (2016).
Google Scholar
Carter, E. C. & McCullough, M. E. Publication bias and the limited strength model of self-control: has the evidence for ego depletion been overestimated? Front. Psychol. 5, 823 (2014).
Google Scholar
Hagger, M. S., Wood, C., Stiff, C. & Chatzisarantis, N. L. D. Ego depletion and the strength model of self-control: a meta-analysis. Psychol. Bull. 136, 495–525 (2010).
Google Scholar
Mertens, S., Herberz, M., Hahnel, U. J. J. & Brosch, T. The effectiveness of nudging: a meta-analysis of choice architecture interventions across behavioral domains. Proc. Natl Acad. Sci. USA 119, e2107346118 (2022).
Google Scholar
Nelson, L. D., Simmons, J. & Simonsohn, U. Psychology’s renaissance. Annu. Rev. Psychol. 69, 511–534 (2018).
Google Scholar
Vazire, S. Implications of the credibility revolution for productivity, creativity, and progress. Perspect. Psychol. Sci. 13, 411–417 (2018).
Google Scholar
Spellman, B. A. A short (personal) future history of revolution 2.0. Perspect. Psychol. Sci. 10, 886–899 (2015).
Google Scholar
Fanelli, D. “Positive” results increase down the hierarchy of the sciences. PLoS One 5, e10068 (2010).
Google Scholar
Open Science Collaboration. Estimating the reproducibility of psychological science. Science 349, aac4716 (2015).
Google Scholar
Cheung, I. et al. Registered replication report: study 1 from Finkel, Rusbult, Kumashiro & Hannon (2002). Perspect. Psychol. Sci. 11, 750–764 (2016).
Google Scholar
O’Donnell, M. et al. Registered replication report: Dijksterhuis and van Knippenberg (1998). Perspect. Psychol. Sci. 13, 268–294 (2018).
Google Scholar
Wagenmakers, E.-J. et al. Registered replication report: Strack, Martin & Stepper (1988). Perspect. Psychol. Sci. 11, 917–928 (2016).
Google Scholar
Eerland, A. et al. Registered replication report: Hart & Albarracín (2011). Perspect. Psychol. Sci. 11, 158–171 (2016).
Google Scholar
Guest, O. & Martin, A. E. How computational modeling can force theory building in psychological science. Perspect. Psychol. Sci. 16, 789–802 (2021).
Google Scholar
Robinaugh, D. J., Haslbeck, J. M. B., Ryan, O., Fried, E. I. & Waldorp, L. J. Invisible hands and fine calipers: a call to use formal theory as a toolkit for theory construction. Perspect. Psychol. Sci. 16, 725–743 (2021).
Google Scholar
Hussey, I. & Hughes, S. Hidden invalidity among 15 commonly used measures in social and personality psychology. Adv. Meth. Pract. Psychol. Sci. 3, 166–184 (2020).
Google Scholar
Flake, J. K. & Fried, E. I. Measurement schmeasurement: questionable measurement practices and how to avoid them. Adv. Meth. Pract. Psychol. Sci. 3, 456–465 (2020).
Google Scholar
Haucke, M., Hoekstra, R. & van Ravenzwaaij, D. When numbers fail: do researchers agree on operationalization of published research? R. Soc. Open Sci. 8, 191354 (2021).
Google Scholar
Simmons, J. P., Nelson, L. D. & Simonsohn, U. False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychol. Sci. 22, 1359–1366 (2011).
Google Scholar
Silberzahn, R. et al. Many analysts, one data set: making transparent how variations in analytic choices affect results. Adv. Meth. Pract. Psychol. Sci. 1, 337–356 (2018).
Google Scholar
Bakker, M. & Wicherts, J. M. The (mis)reporting of statistical results in psychology journals. Behav. Res. 43, 666–678 (2011).
Google Scholar
Nuijten, M. B., Hartgerink, C. H. J., Assen, M. A. L. M., van, Epskamp, S. & Wicherts, J. M. The prevalence of statistical reporting errors in psychology (1985–2013). Behav. Res. 48, 1205–1226 (2016).
Google Scholar
Wicherts, J. M., Borsboom, D., Kats, J. & Molenaar, D. The poor availability of psychological research data for reanalysis. Am. Psychol. 61, 726–728 (2006).
Google Scholar
Chambers, C. D., Feredoes, E., Muthukumaraswamy, S. D. & Etchells, P. J. Instead of “playing the game” it is time to change the rules: registered reports at AIMS Neuroscience and beyond. AIMS Neurosci. 1, 4–17 (2014).
Google Scholar
King, K. M., Pullmann, M. D., Lyon, A. R., Dorsey, S. & Lewis, C. C. Using implementation science to close the gap between the optimal and typical practice of quantitative methods in clinical science. J. Abnorm. Psychol. 128, 547–562 (2019).
Google Scholar
Bakker, M., van Dijk, A. & Wicherts, J. M. The rules of the game called psychological science. Perspect. Psychol. Sci. 7, 543–554 (2012).
Google Scholar
Nosek, B. A., Spies, J. R. & Motyl, M. Scientific utopia: II. Restructuring incentives and practices to promote truth over publishability. Perspect. Psychol. Sci. 7, 615–631 (2012).
Google Scholar
Hengartner, M. P. Raising awareness for the replication crisis in clinical psychology by focusing on inconsistencies in psychotherapy research: how much can we rely on published findings from efficacy trials? Front. Psychol. 9, 256 (2018).
Google Scholar
Tackett, J. L. & Miller, J. D. Introduction to the special section on increasing replicability, transparency, and openness in clinical psychology. J. Abnorm. Psychol. 128, 487–492 (2019).
Google Scholar
Tackett, J. L. et al. It’s time to broaden the replicability conversation: thoughts for and from clinical psychological science. Perspect. Psychol. Sci. 12, 742–756 (2017).
Google Scholar
Tackett, J. L., Brandes, C. M., King, K. M. & Markon, K. E. Psychology’s replication crisis and clinical psychological science. Annu. Rev. Clin. Psychol. 15, 579–604 (2019).
Google Scholar
Cuijpers, P. & Cristea, I. A. How to prove that your therapy is effective, even when it is not: a guideline. Epidemiol. Psychiat. Sci. 25, 428–435 (2016).
Google Scholar
Fried, E. I. Lack of theory building and testing impedes progress in the factor and network literature. Psychol. Inq. 31, 271–288 (2020).
Google Scholar
Reardon, K. W., Smack, A. J., Herzhoff, K. & Tackett, J. L. An N-pact factor for clinical psychological research. J. Abnorm. Psychol. 128, 493–499 (2019).
Google Scholar
Fried, E. I., Flake, J. K. & Robinaugh, D. J. Revisiting the theoretical and methodological foundations of depression measurement. Nat. Rev. Psychol. 1, 358–368 (2022).
Google Scholar
Driessen, E., Hollon, S. D., Bockting, C. L. H., Cuijpers, P. & Turner, E. H. Does publication bias inflate the apparent efficacy of psychological treatment for major depressive disorder? A systematic review and meta-analysis of US national institutes of health-funded trials. PLoS One 10, e0137864 (2015).
Google Scholar
Cristea, I. A., Gentili, C., Pietrini, P. & Cuijpers, P. Sponsorship bias in the comparative efficacy of psychotherapy and pharmacotherapy for adult depression: meta-analysis. Br. J. Psychiat. 210, 16–23 (2017).
Google Scholar
Pittelkow, M.-M., Hoekstra, R., Karsten, J. & van Ravenzwaaij, D. Replication target selection in clinical psychology: a Bayesian and qualitative reevaluation. Clin. Psychol. Sci. Pract. 28, 210–221 (2021).
Google Scholar
Williams, A. J., Botanov, Y., Kilshaw, R. E., Wong, R. E. & Sakaluk, J. K. Potentially harmful therapies: a meta‐scientific review of evidential value. Clin. Psychol. Sci. Pract. 28, 5–18 (2020).
Google Scholar
Sakaluk, J. K., Williams, A. J., Kilshaw, R. E. & Rhyner, K. T. Evaluating the evidential value of empirically supported psychological treatments (ESTs): a meta-scientific review. J. Abnorm. Psychol. 128, 500–509 (2019).
Google Scholar
Williams, A. J. et al. A metascientific review of the evidential value of acceptance and commitment therapy for depression. Behav. Ther. (2022).
Google Scholar
Higgins, J. P. T. et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. Br. Med. J. 343, d5928 (2011).
Google Scholar
Munder, T., Brütsch, O., Leonhart, R., Gerger, H. & Barth, J. Researcher allegiance in psychotherapy outcome research: an overview of reviews. Clin. Psychol. Rev. 33, 501 (2013).
Google Scholar
Egger, M., Smith, G. D., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. Br. Med. J. 315, 629–634 (1997).
Google Scholar
Guyatt, G. H. et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. Br. Med. J. 336, 924–926 (2008).
Google Scholar
Sterne, J. A. et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. Br. Med. J. 355, (2016).
Google Scholar
Katikireddi, S. V., Egan, M. & Petticrew, M. How do systematic reviews incorporate risk of bias assessments into the synthesis of evidence? A methodological study. J. Epidemiol. Commun. Health 69, 189–195 (2015).
Google Scholar
Losilla, J.-M., Oliveras, I., Marin-Garcia, J. A. & Vives, J. Three risk of bias tools lead to opposite conclusions in observational research synthesis. J. Clin. Epidemiol. 101, 61–72 (2018).
Google Scholar
Armijo-Olivo, S., Stiles, C. R., Hagen, N. A., Biondo, P. D. & Cummings, G. G. Assessment of study quality for systematic reviews: a comparison of the Cochrane Collaboration risk of bias tool and the effective public health practice project quality assessment tool: methodological research: quality assessment for systematic reviews. J. Eval. Clin. Pract. 18, 12–18 (2012).
Google Scholar
Lundh, A. & Gøtzsche, P. C. Recommendations by Cochrane Review Groups for assessment of the risk of bias in studies. BMC Med. Res. Methodol. 8, 22 (2008).
Google Scholar
Remedios, J. D. Psychology must grapple with Whiteness. Nat. Rev. Psychol. 1, 125–126 (2022).
Google Scholar
Klein, V., Savaş, Ö. & Conley, T. D. How WEIRD and androcentric is sex research? Global inequities in study populations. J. Sex Res. (2021).
Google Scholar
Andersen, J. P. & Zou, C. Exclusion of sexual minority couples from research. Health Sci. J. 9, 1–9 (2015).
Müller, A. Beyond ‘invisibility’: queer intelligibility and symbolic annihilation in healthcare. Cult. Health Sex. 20, 14–27 (2018).
Google Scholar
Williamson, H. C. et al. How diverse are the samples used to study intimate relationships? A systematic review. J. Soc. Pers. Relat. 39, 10871109 (2021).
Google Scholar
Spates, K. “The missing link”: the exclusion of black women in psychological research and the implications for black women’s mental health. SAGE Open 2, 215824401245517 (2012).
Google Scholar
Cooper, A. A. & Conklin, L. R. Dropout from individual psychotherapy for major depression: a meta-analysis of randomized clinical trials. Clin. Psychol. Rev. 40, 57–65 (2015).
Google Scholar
Falconnier, L. Socioeconomic status in the treatment of depression. Am. J. Orthopsychiat. 79, 148–158 (2009).
Google Scholar
Finegan, M., Firth, N., Wojnarowski, C. & Delgadillo, J. Associations between socioeconomic status and psychological therapy outcomes: a systematic review and meta‐analysis. Depress. Anxiety 35, 560–573 (2018).
Google Scholar
Willner, P. The effectiveness of psychotherapeutic interventions for people with learning disabilities: a critical overview. J. Intellect. Disabil. Res. 49, 73–85 (2005).
Google Scholar
Mak, W. W. S., Law, R. W., Alvidrez, J. & Pérez-Stable, E. J. Gender and ethnic diversity in NIMH-funded clinical trials: review of a decade of published research. Adm. Policy Ment. Health 34, 497–503 (2007).
Google Scholar
Polo, A. J. et al. Diversity in randomized clinical trials of depression: a 36-year review. Clin. Psychol. Rev. 67, 22–35 (2019).
Google Scholar
Akinhanmi, M. O. et al. Racial disparities in bipolar disorder treatment and research: a call to action. Bipolar Disord. 20, 506–514 (2018).
Google Scholar
Nalven, T., Spillane, N. S., Schick, M. R. & Weyandt, L. L. Diversity inclusion in United States opioid pharmacological treatment trials: a systematic review. Exp. Clin. Psychopharmacol. 29, 524–538 (2021).
Google Scholar
Mullarkey, M. C. & Schleider, J. L. Embracing scientific humility and complexity: learning “what works for whom” in youth psychotherapy research. J. Clin. Child Adolesc. Psychol. 50, 443–449 (2021).
Google Scholar
Sue, D. W. et al. Racial microaggressions in everyday life: implications for clinical practice. Am. Psychol. 62, 271–286 (2007).
Google Scholar
Spengler, E. S., Miller, D. J. & Spengler, P. M. Microaggressions: clinical errors with sexual minority clients. Psychotherapy 53, 360–366 (2016).
Google Scholar
Alegría, M. et al. Disparity in depression treatment among racial and ethnic minority populations in the United States. Psychiat. Serv. 59, 1264–1272 (2008).
Google Scholar
Hayes, J. A., Owen, J. & Bieschke, K. J. Therapist differences in symptom change with racial/ethnic minority clients. Psychotherapy 52, 308–314 (2015).
Google Scholar
Imel, Z. E. et al. Racial/ethnic disparities in therapist effectiveness: a conceptualization and initial study of cultural competence. J. Couns. Psychol. 58, 290–298 (2011).
Google Scholar
Owen, J. et al. Racial/ethnic disparities in client unilateral termination: the role of therapists’ cultural comfort. Psychother. Res. 27, 102–111 (2017).
Google Scholar
Melfi, C. A., Croghan, T. W., Hanna, M. P. & Robinson, R. L. Racial variation in antidepressant treatment in a medicaid population. J. Clin. Psychiat. 61, 16–21 (2000).
Google Scholar
Ward, E. C. Examining differential treatment effects for depression in racial and ethnic minority women: a qualitative systematic review. J. Natl Med. Assoc. 99, 265–274 (2007).
Google Scholar
Gregory, V. L. Cognitive–behavioral therapy for depressive symptoms in persons of African descent: a meta-analysis. J. Soc. Serv. Res. 42, 113–129 (2016).
Google Scholar
Cuijpers, P. et al. A meta-analysis of cognitive–behavioural therapy for adult depression, alone and in comparison with other treatments. Can. J. Psychiat. 58, 376–385 (2013).
Google Scholar
Wendt, D. C., Huson, K., Albatnuni, M. & Gone, J. P. What are the best practices for psychotherapy with indigenous peoples in the United States and Canada? A thorny question. J. Consult. Clin. Psychol. 90, 802–814 (2022).
Google Scholar
Lorenzo-Luaces, L., Dierckman, C. & Adams, S. Attitudes and (mis)information about cognitive behavioral therapy on TikTok: an analysis of video content. J. Med. Internet Res. 25, e45571 (2023).
Google Scholar
Lorenzo-Luaces, L., Zimmerman, M. & Cuijpers, P. Are studies of psychotherapies for depression more or less generalizable than studies of antidepressants? J. Affect. Disord. 234, 8–13 (2018).
Google Scholar
Grant, B. F. & Harford, T. C. Comorbidity between DSM-IV alcohol use disorders and major depression: results of a national survey. Drug Alcohol. Depend. 39, 197–206 (1995).
Google Scholar
Moher, D. et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 4, 1 (2015).
Google Scholar
Appelbaum, M. et al. Journal article reporting standards for quantitative research in psychology: the APA Publications and Communications Board task force report. Am. Psychol. 73, 3–25 (2018).
Google Scholar
Marshall, I. J. & Wallace, B. C. Toward systematic review automation: a practical guide to using machine learning tools in research synthesis. Syst. Rev. 8, 163 (2019).
Google Scholar
Marshall, I. J. et al. Trialstreamer: a living, automatically updated database of clinical trial reports. J. Am. Med. Inform. Assoc. 27, 1903–1912 (2020).
Google Scholar
Boness, C. L. et al. An evaluation of cognitive behavioral therapy for insomnia: a systematic review and application of Tolin’s criteria for empirically supported treatments. Clin. Psychol. Sci. Pract. 27, e12348 (2020).
Google Scholar
Boness, C. L. et al. The Society of Clinical Psychology’s manual for the evaluation of psychological treatments using the Tolin criteria. Preprint at OSFPreprints (2022).
Google Scholar
Eysenbach, G. & Consort-Ehealth Group. CONSORT-EHEALTH: improving and standardizing evaluation reports of web-based and mobile health interventions. J. Med. Internet Res. 13, e126 (2011).
Google Scholar
Uhlmann, E. L. et al. Scientific utopia III: crowdsourcing science. Perspect. Psychol. Sci. 14, 711–733 (2019).
Google Scholar
Ebersole, C. R. et al. Many Labs 3: evaluating participant pool quality across the academic semester via replication. J. Exp. Soc. Psychol. 67, 68–82 (2016).
Google Scholar
Byers-Heinlein, K. et al. Building a collaborative psychological science: lessons learned from ManyBabies 1. Can. Psychol. 61, 349–363 (2020).
Google Scholar
Moshontz, H. et al. The psychological science accelerator: advancing psychology through a distributed collaborative network. Adv. Meth. Pract. Psychol. Sci. 1, 501–515 (2018).
Google Scholar
Tsuji, S., Bergmann, C. & Cristia, A. Community-augmented meta-analyses: toward cumulative data assessment. Perspect. Psychol. Sci. 9, 661–665 (2014).
Google Scholar
Boutron, I. et al. The COVID-NMA project: building an evidence ecosystem for the COVID-19 pandemic. Ann. Intern. Med. 173, 1015–1017 (2020).
Google Scholar
Sutherland, W. J. Building a tool to overcome barriers in research-implementation spaces: the conservation evidence database. Biol. Conserv. 238, 108199 (2019).
Google Scholar
Vuorre, M. & Curley, J. P. Curating research assets: a tutorial on the git version control system. Adv. Meth. Pract. Psychol. Sci. 1, 219–236 (2018).
Google Scholar
Moshontz, H., Ebersole, C. R., Weston, S. J. & Klein, R. A. A guide for many authors: writing manuscripts in large collaborations. Soc. Personal. Psychol. Compass 15, e12590 (2021).
Google Scholar
Tennant, J. P., Bielczyk, N., Tzovaras, B. G., Masuzzo, P. & Steiner, T. Introducing massively open online papers (MOOPs). KULA 4, 63 (2020).
Google Scholar
Holcombe, A. O. Contributorship, not authorship: use credit to indicate who did what. Publications 7, 48 (2019).
Google Scholar
Pierce, H. H., Dev, A., Statham, E. & Bierer, B. E. Credit data generators for data reuse. Nature 570, 30–32 (2019).
Google Scholar
Graham, I. D. et al. Lost in knowledge translation: time for a map? J. Contin. Educ. Health Prof. 26, 13–24 (2006).
Google Scholar
Higgins, J. P. T. & Thompson, S. G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558 (2002).
Google Scholar
Jones, A. Multidisciplinary team working: collaboration and conflict. Int. J. Ment. Health Nurs. 15, 19–28 (2006).
Google Scholar
Hall, K. L. et al. The science of team science: a review of the empirical evidence and research gaps on collaboration in science. Am. Psychol. 73, 532–548 (2018).
Google Scholar
Mavridis, D. & White, I. R. Dealing with missing outcome data in meta‐analysis. Res. Synth. Meth. 11, 2–13 (2020).
Google Scholar
Enders, C. K. Applied Missing Data Analysis (Guilford Press, 2022).
Schauer, J. M., Diaz, K., Pigott, T. D. & Lee, J. Exploratory analyses for missing data in meta-analyses and meta-regression: a tutorial. Alcohol Alcohol. 57, 35–46 (2022).
Google Scholar
Schauer, J. M., Lee, J., Diaz, K. & Pigott, T. D. On the bias of complete‐ and shifting‐case meta‐regressions with missing covariates. Res. Synth. Meth. 13, 489–507 (2022).
Google Scholar
Schleider, J. L. The fundamental need for lived experience perspectives in developing and evaluating psychotherapies. J. Consult. Clin. Psychol. 91, 119–121 (2023).
Google Scholar
Ramadier, T. Transdisciplinarity and its challenges: the case of urban studies. Futures 36, 423–439 (2004).
Google Scholar
MacLeod, M. What makes interdisciplinarity difficult? Some consequences of domain specificity in interdisciplinary practice. Synthese 195, 697–720 (2018).
Google Scholar
Mazzocchi, F. Scientific research across and beyond disciplines: challenges and opportunities of interdisciplinarity. EMBO Rep. 20, e47682 (2019).
Google Scholar
Bauer, H. H. Barriers against interdisciplinarity: implications for studies of science, technology, and society (STS). Sci. Technol. Hum. Values 15, 105–119 (1990).
Google Scholar
Tourani, P., Adams, B. & Serebrenik, A. Code of conduct in open source projects. In 2017 IEEE 24th Int. Conf. on Software Analysis, Evolution and Reengineering (SANER) 24–33 (IEEE, 2017).
Strack, F. Reflection on the smiling registered replication report. Perspect. Psychol. Sci. 11, 929–930 (2016).
Google Scholar
Norris, P. Cancel culture: myth or reality? Polit. Stud. 71, 145–174 (2021).
Google Scholar
Baumgartner, H. A. et al. How to build up big team science: a practical guide for large-scale collaborations. R. Soc. Open. Sci. 10, 230235 (2023).
Google Scholar
Michelson, M. & Reuter, K. The significant cost of systematic reviews and meta-analyses: a call for greater involvement of machine learning to assess the promise of clinical trials. Contemp. Clin. Trials Commun. 16, 100443 (2019).
Google Scholar
Dicks, L. V., Walsh, J. C. & Sutherland, W. J. Organising evidence for environmental management decisions: a ‘4S’ hierarchy. Trends Ecol. Evol. 29, 607–613 (2014).
Google Scholar
Maseroli, E. et al. Outcome of medical and psychosexual interventions for vaginismus: a systematic review and meta-analysis. J. Sex. Med. 15, 1752–1764 (2018).
Google Scholar
Kothari, A., McCutcheon, C. & Graham, I. D. Defining integrated knowledge translation and moving forward: a response to recent commentaries. Int. J. Health Policy Manag. 6, 299–300 (2017).
Google Scholar
Franconeri, S. L., Padilla, L. M., Shah, P., Zacks, J. M. & Hullman, J. The science of visual data communication: what works. Psychol. Sci. Publ. Interest 22, 110–161 (2021).
Google Scholar
Fitzgerald, K. G. & Tipton, E. The meta-analytic rain cloud plot: a new approach to visualizing clearinghouse data. J. Res. Educ. Eff. 15, 848–875 (2022).
link