September 9, 2024
Reconsidering what makes syntheses of psychological intervention studies useful
  • Green, L. W. Making research relevant: if it is an evidence-based practice, where’s the practice-based evidence? Family Pract. 25, i20–i24 (2008).

    Article 

    Google Scholar 

  • Berlin, J. A. & Golub, R. M. Meta-analysis as evidence: building a better pyramid. J. Am. Med. Assoc. 312, 603 (2014).

    Article 

    Google Scholar 

  • Murad, M. H., Asi, N., Alsawas, M. & Alahdab, F. New evidence pyramid. Evid. Based Med. 21, 125–127 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tomlin, G. & Borgetto, B. Research pyramid: a new evidence-based practice model for occupational therapy. Am. J. Occup. Ther. 65, 189–196 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Oliver, K. & Cairney, P. The dos and don’ts of influencing policy: a systematic review of advice to academics. Palgrave Commun. 5, 21 (2019).

    Article 

    Google Scholar 

  • Sutton, A. J., Cooper, N. J. & Jones, D. R. Evidence synthesis as the key to more coherent and efficient research. BMC Med. Res. Methodol. 9, 29 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hunter, J. E. & Schmidt, F. L. Cumulative research knowledge and social policy formulation: the critical role of meta-analysis. Psychol. Public Policy Law 2, 324–347 (1996).

    Article 

    Google Scholar 

  • Noar, S. M. In pursuit of cumulative knowledge in health communication: the role of meta-analysis. Health Commun. 20, 169–175 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Cuijpers, P., Karyotaki, E., de Wit, L. & Ebert, D. D. The effects of fifteen evidence-supported therapies for adult depression: a meta-analytic review. Psychother. Res. 30, 279–293 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Öst, L.-G., Riise, E. N., Wergeland, G. J., Hansen, B. & Kvale, G. Cognitive behavioral and pharmacological treatments of OCD in children: a systematic review and meta-analysis. J. Anxiety Disord. 43, 58–69 (2016).

    Article 
    PubMed 

    Google Scholar 

  • McLean, C. P., Levy, H. C., Miller, M. L. & Tolin, D. F. Exposure therapy for PTSD: a meta-analysis. Clin. Psychol. Rev. 91, 102115 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Smith, M. L. & Glass, G. V. Meta-analysis of psychotherapy outcome studies. Am. Psychol. 32, 752–760 (1977).

    Article 
    PubMed 

    Google Scholar 

  • Leichsenring, F., Steinert, C., Rabung, S. & Ioannidis, J. P. A. The efficacy of psychotherapies and pharmacotherapies for mental disorders in adults: an umbrella review and meta‐analytic evaluation of recent meta‐analyses. World Psychiat. 21, 133–145 (2022).

    Article 

    Google Scholar 

  • Cipriani, A. et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet 391, 1357–1366 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kirsch, I. & Jakobsen, J. C. Network meta-analysis of antidepressants. Lancet 392, 1010 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Wampold, B. E. et al. A meta-analysis of outcome studies comparing bona fide psychotherapies: empirically, ‘all must have prizes’. Psychol. Bull. 122, 203–215 (1997).

    Article 

    Google Scholar 

  • Rind, B., Tromovitch, P. & Bauserman, R. A meta-analytic examination of assumed properties of child sexual abuse using college samples. Psychol. Bull. 124, 22–53 (1998).

    Article 
    PubMed 

    Google Scholar 

  • Ioannidis, J. P. A. The mass production of redundant, misleading, and conflicted systematic reviews and meta-analyses: mass production of systematic reviews and meta-analyses. Milbank Q. 94, 485–514 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gloaguen, V., Cottraux, J. & Cucherat, M., Ivy-Marie Blackburn. A meta-analysis of the effects of cognitive therapy in depressed patients. J. Affect. Disord. 49, 59–72 (1998).

    Article 
    PubMed 

    Google Scholar 

  • Wampold, B. E., Minami, T., Baskin, T. W. & Callen Tierney, S. A meta-(re)analysis of the effects of cognitive therapy versus ‘other therapies’ for depression. J. Affect. Disord. 68, 159–165 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Macnamara, B. N. & Burgoyne, A. P. Do growth mindset interventions impact students’ academic achievement? A systematic review and meta-analysis with recommendations for best practices. Psychol. Bull. (2022).

    Article 
    PubMed 

    Google Scholar 

  • Burnette, J. L. et al. A systematic review and meta-analysis of growth mindset interventions: for whom, how, and why might such interventions work? Psychol. Bull. (2022).

    Article 
    PubMed 

    Google Scholar 

  • Cuijpers, P., Karyotaki, E., Reijnders, M. & Ebert, D. D. Was Eysenck right after all? A reassessment of the effects of psychotherapy for adult depression. Epidemiol. Psychiat. Sci. 28, 21–30 (2019).

    Article 

    Google Scholar 

  • Munder, T. et al. Is psychotherapy effective? A re-analysis of treatments for depression. Epidemiol. Psychiat. Sci. 28, 268–274 (2019).

    Article 

    Google Scholar 

  • Cristea, I. A. et al. The effects of cognitive behavioral therapy are not systematically falling: a revision of Johnsen and Friborg (2015). Psychol. Bull. 143, 326–340 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Jones, E. B. & Sharpe, L. Cognitive bias modification: a review of meta-analyses. J. Affect. Disord. 223, 175–183 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Cuijpers, P., Miguel, C., Papola, D., Harrer, M. & Karyotaki, E. From living systematic reviews to meta-analytical research domains. Evid. Based Ment. Health (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Elliott, J. H. et al. Living systematic review: 1. Introduction — the why, what, when, and how. J. Clin. Epidemiol. 91, 23–30 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Simonsohn, U., Simmons, J. & Nelson, L. D. Above averaging in literature reviews. Nat. Rev. Psychol. 1, 551–552 (2022).

    Article 

    Google Scholar 

  • Aromataris, E. et al. Summarizing systematic reviews: methodological development, conduct and reporting of an umbrella review approach. Int. J. Evidence-based Healthc. 13, 132–140 (2015).

    Article 

    Google Scholar 

  • Papatheodorou, S. Umbrella reviews: what they are and why we need them. Eur. J. Epidemiol. 34, 543–546 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Rebar, A. L. et al. A meta-meta-analysis of the effect of physical activity on depression and anxiety in non-clinical adult populations. Health Psychol. Rev. 9, 366–378 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Chambless, D. L. & Hollon, S. D. Defining empirically supported therapies. J. Consult. Clin. Psychol. 66, 7–18 (1998).

    Article 
    PubMed 

    Google Scholar 

  • Tolin, D. F., McKay, D., Forman, E. M., Klonsky, E. D. & Thombs, B. D. Empirically supported treatment: recommendations for a new model. Clin. Psychol. Sci. Pract. 22, 317–338 (2015).

    Google Scholar 

  • Donnelly, C. A. et al. Four principles for synthesizing evidence. Nature 558, 361–364 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Platt, J. R. Strong inference: certain systematic methods of scientific thinking may produce much more rapid progress than others. Science 146, 347–353 (1964).

    Article 
    PubMed 

    Google Scholar 

  • McGuire, W. J. A perspectivist approach to theory construction. Pers. Soc. Psychol. Rev. 8, 173–182 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Lilienfeld, S. O. in Oxford Research Encyclopedia Of Psychology (ed. Beck, J. G.) 1–20 (Oxford Univ. Press, 2017).

  • Przeworski, A., Peterson, E. & Piedra, A. A systematic review of the efficacy, harmful effects, and ethical issues related to sexual orientation change efforts. Clin. Psychol. Sci. Pract. 28, 81–100 (2021).

    Article 

    Google Scholar 

  • IJzerman, H. et al. Use caution when applying behavioural science to policy. Nat. Hum. Behav. 4, 1092–1094 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Lilienfeld, S. O. Psychological treatments that cause harm. Perspect. Psychol. Sci. 2, 53–70 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Schechinger, H. A., Sakaluk, J. K. & Moors, A. C. Harmful and helpful therapy practices with consensually non-monogamous clients: toward an inclusive framework. J. Consult. Clin. Psychol. 86, 879–891 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Tipton, E., Pustejovsky, J. E. & Ahmadi, H. A history of meta-regression: technical, conceptual, and practical developments between 1974 and 2018. Res. Synth. Meth. 10, 161–179 (2019).

    Article 

    Google Scholar 

  • Moeyaert, M. et al. Methods for dealing with multiple outcomes in meta-analysis: a comparison between averaging effect sizes, robust variance estimation and multilevel meta-analysis. Int. J. Soc. Res. Methodol. 20, 559–572 (2017).

    Article 

    Google Scholar 

  • Cheung, M. W.-L. Modeling dependent effect sizes with three-level meta-analyses: a structural equation modeling approach. Psychol. Meth. 19, 211–229 (2014).

    Article 

    Google Scholar 

  • Konstantopoulos, S. Fixed effects and variance components estimation in three-level meta-analysis: three-level meta-analysis. Res. Synth. Meth. 2, 61–76 (2011).

    Article 

    Google Scholar 

  • Hedges, L. V. A random effects model for effect sizes. Psychol. Bull. 93, 388–395 (1983).

    Article 

    Google Scholar 

  • Tipton, E., Pustejovsky, J. E. & Ahmadi, H. Current practices in meta-regression in psychology, education, and medicine. Res. Synth. Meth. 10, 180–194 (2019).

    Article 

    Google Scholar 

  • Gronau, Q. F., Heck, D. W., Berkhout, S. W., Haaf, J. M. & Wagenmakers, E.-J. A primer on Bayesian model-averaged meta-analysis. Adv. Meth. Pract. Psychol. Sci. 4, (2021).

  • Bryan, C. J., Tipton, E. & Yeager, D. S. Behavioural science is unlikely to change the world without a heterogeneity revolution. Nat. Hum. Behav. 5, 980–989 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Linden, A. H. & Hönekopp, J. Heterogeneity of research results: a new perspective from which to assess and promote progress in psychological science. Perspect. Psychol. Sci. 16, 358–376 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Borenstein, M., Higgins, J. P. T., Hedges, L. V. & Rothstein, H. R. Basics of meta-analysis: I2 is not an absolute measure of heterogeneity. Res. Synth. Meth. 8, 5–18 (2017).

    Article 

    Google Scholar 

  • Tipton, E. et al. Why meta-analyses of growth mindset and other interventions should follow best practices for examining heterogeneity. Psychol. Bull. (in the press).

  • Sakaluk, J. K., Kim, J., Campbell, E., Baxter, A. & Impett, E. A. Self-esteem and sexual health: a multilevel meta-analytic review. Health Psychol. Rev. (2019).

    Article 
    PubMed 

    Google Scholar 

  • Aczel, B. et al. Consensus-based guidance for conducting and reporting multi-analyst studies. eLife 10, e72185 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hunter, J. E. & Schmidt, F. L. Dichotomization of continuous variables: the implications for meta-analysis. J. Appl. Psychol. 75, 334–349 (1990).

    Article 

    Google Scholar 

  • Rosenthal, R. The file drawer problem and tolerance for null results. Psychol. Bull. 86, 638–641 (1979).

    Article 

    Google Scholar 

  • Sterne, J. A. C. et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. Br. Med. J. 343, d4002–d4002 (2011).

    Article 

    Google Scholar 

  • Hunter, J. E. & Schmidt, F. L. Methods of Meta-analysis: Correcting Error and Bias in Research Findings (Sage, 2004).

  • Stanley, T. D. & Doucouliagos, H. Meta-regression approximations to reduce publication selection bias. Res. Synth. Meth. 5, 60–78 (2014).

    Article 

    Google Scholar 

  • Iyengar, S. & Greenhouse, J. B. Selection models and the file drawer problem. Stat. Sci. 3, 109–135 (1988).

    Google Scholar 

  • Carter, E. C., Schönbrodt, F. D., Gervais, W. M. & Hilgard, J. Correcting for bias in psychology: a comparison of meta-analytic methods. Adv. Meth. Pract. Psychol. Sci. 2, 115–144 (2019).

    Article 

    Google Scholar 

  • McShane, B. B., Böckenholt, U. & Hansen, K. T. Adjusting for publication bias in meta-analysis: an evaluation of selection methods and some cautionary notes. Perspect. Psychol. Sci. 11, 730–749 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Carter, E. C. & McCullough, M. E. Publication bias and the limited strength model of self-control: has the evidence for ego depletion been overestimated? Front. Psychol. 5, 823 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hagger, M. S., Wood, C., Stiff, C. & Chatzisarantis, N. L. D. Ego depletion and the strength model of self-control: a meta-analysis. Psychol. Bull. 136, 495–525 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Mertens, S., Herberz, M., Hahnel, U. J. J. & Brosch, T. The effectiveness of nudging: a meta-analysis of choice architecture interventions across behavioral domains. Proc. Natl Acad. Sci. USA 119, e2107346118 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Nelson, L. D., Simmons, J. & Simonsohn, U. Psychology’s renaissance. Annu. Rev. Psychol. 69, 511–534 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Vazire, S. Implications of the credibility revolution for productivity, creativity, and progress. Perspect. Psychol. Sci. 13, 411–417 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Spellman, B. A. A short (personal) future history of revolution 2.0. Perspect. Psychol. Sci. 10, 886–899 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Fanelli, D. “Positive” results increase down the hierarchy of the sciences. PLoS One 5, e10068 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Open Science Collaboration. Estimating the reproducibility of psychological science. Science 349, aac4716 (2015).

    Article 

    Google Scholar 

  • Cheung, I. et al. Registered replication report: study 1 from Finkel, Rusbult, Kumashiro & Hannon (2002). Perspect. Psychol. Sci. 11, 750–764 (2016).

    Article 
    PubMed 

    Google Scholar 

  • O’Donnell, M. et al. Registered replication report: Dijksterhuis and van Knippenberg (1998). Perspect. Psychol. Sci. 13, 268–294 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Wagenmakers, E.-J. et al. Registered replication report: Strack, Martin & Stepper (1988). Perspect. Psychol. Sci. 11, 917–928 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Eerland, A. et al. Registered replication report: Hart & Albarracín (2011). Perspect. Psychol. Sci. 11, 158–171 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Guest, O. & Martin, A. E. How computational modeling can force theory building in psychological science. Perspect. Psychol. Sci. 16, 789–802 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Robinaugh, D. J., Haslbeck, J. M. B., Ryan, O., Fried, E. I. & Waldorp, L. J. Invisible hands and fine calipers: a call to use formal theory as a toolkit for theory construction. Perspect. Psychol. Sci. 16, 725–743 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hussey, I. & Hughes, S. Hidden invalidity among 15 commonly used measures in social and personality psychology. Adv. Meth. Pract. Psychol. Sci. 3, 166–184 (2020).

    Article 

    Google Scholar 

  • Flake, J. K. & Fried, E. I. Measurement schmeasurement: questionable measurement practices and how to avoid them. Adv. Meth. Pract. Psychol. Sci. 3, 456–465 (2020).

    Article 

    Google Scholar 

  • Haucke, M., Hoekstra, R. & van Ravenzwaaij, D. When numbers fail: do researchers agree on operationalization of published research? R. Soc. Open Sci. 8, 191354 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simmons, J. P., Nelson, L. D. & Simonsohn, U. False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychol. Sci. 22, 1359–1366 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Silberzahn, R. et al. Many analysts, one data set: making transparent how variations in analytic choices affect results. Adv. Meth. Pract. Psychol. Sci. 1, 337–356 (2018).

    Article 

    Google Scholar 

  • Bakker, M. & Wicherts, J. M. The (mis)reporting of statistical results in psychology journals. Behav. Res. 43, 666–678 (2011).

    Article 

    Google Scholar 

  • Nuijten, M. B., Hartgerink, C. H. J., Assen, M. A. L. M., van, Epskamp, S. & Wicherts, J. M. The prevalence of statistical reporting errors in psychology (1985–2013). Behav. Res. 48, 1205–1226 (2016).

    Article 

    Google Scholar 

  • Wicherts, J. M., Borsboom, D., Kats, J. & Molenaar, D. The poor availability of psychological research data for reanalysis. Am. Psychol. 61, 726–728 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Chambers, C. D., Feredoes, E., Muthukumaraswamy, S. D. & Etchells, P. J. Instead of “playing the game” it is time to change the rules: registered reports at AIMS Neuroscience and beyond. AIMS Neurosci. 1, 4–17 (2014).

    Article 

    Google Scholar 

  • King, K. M., Pullmann, M. D., Lyon, A. R., Dorsey, S. & Lewis, C. C. Using implementation science to close the gap between the optimal and typical practice of quantitative methods in clinical science. J. Abnorm. Psychol. 128, 547–562 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Bakker, M., van Dijk, A. & Wicherts, J. M. The rules of the game called psychological science. Perspect. Psychol. Sci. 7, 543–554 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Nosek, B. A., Spies, J. R. & Motyl, M. Scientific utopia: II. Restructuring incentives and practices to promote truth over publishability. Perspect. Psychol. Sci. 7, 615–631 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Hengartner, M. P. Raising awareness for the replication crisis in clinical psychology by focusing on inconsistencies in psychotherapy research: how much can we rely on published findings from efficacy trials? Front. Psychol. 9, 256 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tackett, J. L. & Miller, J. D. Introduction to the special section on increasing replicability, transparency, and openness in clinical psychology. J. Abnorm. Psychol. 128, 487–492 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Tackett, J. L. et al. It’s time to broaden the replicability conversation: thoughts for and from clinical psychological science. Perspect. Psychol. Sci. 12, 742–756 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Tackett, J. L., Brandes, C. M., King, K. M. & Markon, K. E. Psychology’s replication crisis and clinical psychological science. Annu. Rev. Clin. Psychol. 15, 579–604 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Cuijpers, P. & Cristea, I. A. How to prove that your therapy is effective, even when it is not: a guideline. Epidemiol. Psychiat. Sci. 25, 428–435 (2016).

    Article 

    Google Scholar 

  • Fried, E. I. Lack of theory building and testing impedes progress in the factor and network literature. Psychol. Inq. 31, 271–288 (2020).

    Article 

    Google Scholar 

  • Reardon, K. W., Smack, A. J., Herzhoff, K. & Tackett, J. L. An N-pact factor for clinical psychological research. J. Abnorm. Psychol. 128, 493–499 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Fried, E. I., Flake, J. K. & Robinaugh, D. J. Revisiting the theoretical and methodological foundations of depression measurement. Nat. Rev. Psychol. 1, 358–368 (2022).

    Article 

    Google Scholar 

  • Driessen, E., Hollon, S. D., Bockting, C. L. H., Cuijpers, P. & Turner, E. H. Does publication bias inflate the apparent efficacy of psychological treatment for major depressive disorder? A systematic review and meta-analysis of US national institutes of health-funded trials. PLoS One 10, e0137864 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cristea, I. A., Gentili, C., Pietrini, P. & Cuijpers, P. Sponsorship bias in the comparative efficacy of psychotherapy and pharmacotherapy for adult depression: meta-analysis. Br. J. Psychiat. 210, 16–23 (2017).

    Article 

    Google Scholar 

  • Pittelkow, M.-M., Hoekstra, R., Karsten, J. & van Ravenzwaaij, D. Replication target selection in clinical psychology: a Bayesian and qualitative reevaluation. Clin. Psychol. Sci. Pract. 28, 210–221 (2021).

    Article 

    Google Scholar 

  • Williams, A. J., Botanov, Y., Kilshaw, R. E., Wong, R. E. & Sakaluk, J. K. Potentially harmful therapies: a meta‐scientific review of evidential value. Clin. Psychol. Sci. Pract. 28, 5–18 (2020).

    Article 

    Google Scholar 

  • Sakaluk, J. K., Williams, A. J., Kilshaw, R. E. & Rhyner, K. T. Evaluating the evidential value of empirically supported psychological treatments (ESTs): a meta-scientific review. J. Abnorm. Psychol. 128, 500–509 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Williams, A. J. et al. A metascientific review of the evidential value of acceptance and commitment therapy for depression. Behav. Ther. (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Higgins, J. P. T. et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. Br. Med. J. 343, d5928 (2011).

    Article 

    Google Scholar 

  • Munder, T., Brütsch, O., Leonhart, R., Gerger, H. & Barth, J. Researcher allegiance in psychotherapy outcome research: an overview of reviews. Clin. Psychol. Rev. 33, 501 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Egger, M., Smith, G. D., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. Br. Med. J. 315, 629–634 (1997).

    Article 

    Google Scholar 

  • Guyatt, G. H. et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. Br. Med. J. 336, 924–926 (2008).

    Article 

    Google Scholar 

  • Sterne, J. A. et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. Br. Med. J. 355, (2016).

    Article 

    Google Scholar 

  • Katikireddi, S. V., Egan, M. & Petticrew, M. How do systematic reviews incorporate risk of bias assessments into the synthesis of evidence? A methodological study. J. Epidemiol. Commun. Health 69, 189–195 (2015).

    Article 

    Google Scholar 

  • Losilla, J.-M., Oliveras, I., Marin-Garcia, J. A. & Vives, J. Three risk of bias tools lead to opposite conclusions in observational research synthesis. J. Clin. Epidemiol. 101, 61–72 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Armijo-Olivo, S., Stiles, C. R., Hagen, N. A., Biondo, P. D. & Cummings, G. G. Assessment of study quality for systematic reviews: a comparison of the Cochrane Collaboration risk of bias tool and the effective public health practice project quality assessment tool: methodological research: quality assessment for systematic reviews. J. Eval. Clin. Pract. 18, 12–18 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Lundh, A. & Gøtzsche, P. C. Recommendations by Cochrane Review Groups for assessment of the risk of bias in studies. BMC Med. Res. Methodol. 8, 22 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Remedios, J. D. Psychology must grapple with Whiteness. Nat. Rev. Psychol. 1, 125–126 (2022).

    Article 

    Google Scholar 

  • Klein, V., Savaş, Ö. & Conley, T. D. How WEIRD and androcentric is sex research? Global inequities in study populations. J. Sex Res. (2021).

    Article 
    PubMed 

    Google Scholar 

  • Andersen, J. P. & Zou, C. Exclusion of sexual minority couples from research. Health Sci. J. 9, 1–9 (2015).

    Google Scholar 

  • Müller, A. Beyond ‘invisibility’: queer intelligibility and symbolic annihilation in healthcare. Cult. Health Sex. 20, 14–27 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Williamson, H. C. et al. How diverse are the samples used to study intimate relationships? A systematic review. J. Soc. Pers. Relat. 39, 10871109 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spates, K. “The missing link”: the exclusion of black women in psychological research and the implications for black women’s mental health. SAGE Open 2, 215824401245517 (2012).

    Article 

    Google Scholar 

  • Cooper, A. A. & Conklin, L. R. Dropout from individual psychotherapy for major depression: a meta-analysis of randomized clinical trials. Clin. Psychol. Rev. 40, 57–65 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Falconnier, L. Socioeconomic status in the treatment of depression. Am. J. Orthopsychiat. 79, 148–158 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Finegan, M., Firth, N., Wojnarowski, C. & Delgadillo, J. Associations between socioeconomic status and psychological therapy outcomes: a systematic review and meta‐analysis. Depress. Anxiety 35, 560–573 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Willner, P. The effectiveness of psychotherapeutic interventions for people with learning disabilities: a critical overview. J. Intellect. Disabil. Res. 49, 73–85 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Mak, W. W. S., Law, R. W., Alvidrez, J. & Pérez-Stable, E. J. Gender and ethnic diversity in NIMH-funded clinical trials: review of a decade of published research. Adm. Policy Ment. Health 34, 497–503 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Polo, A. J. et al. Diversity in randomized clinical trials of depression: a 36-year review. Clin. Psychol. Rev. 67, 22–35 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Akinhanmi, M. O. et al. Racial disparities in bipolar disorder treatment and research: a call to action. Bipolar Disord. 20, 506–514 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nalven, T., Spillane, N. S., Schick, M. R. & Weyandt, L. L. Diversity inclusion in United States opioid pharmacological treatment trials: a systematic review. Exp. Clin. Psychopharmacol. 29, 524–538 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mullarkey, M. C. & Schleider, J. L. Embracing scientific humility and complexity: learning “what works for whom” in youth psychotherapy research. J. Clin. Child Adolesc. Psychol. 50, 443–449 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sue, D. W. et al. Racial microaggressions in everyday life: implications for clinical practice. Am. Psychol. 62, 271–286 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Spengler, E. S., Miller, D. J. & Spengler, P. M. Microaggressions: clinical errors with sexual minority clients. Psychotherapy 53, 360–366 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Alegría, M. et al. Disparity in depression treatment among racial and ethnic minority populations in the United States. Psychiat. Serv. 59, 1264–1272 (2008).

    Article 

    Google Scholar 

  • Hayes, J. A., Owen, J. & Bieschke, K. J. Therapist differences in symptom change with racial/ethnic minority clients. Psychotherapy 52, 308–314 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Imel, Z. E. et al. Racial/ethnic disparities in therapist effectiveness: a conceptualization and initial study of cultural competence. J. Couns. Psychol. 58, 290–298 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Owen, J. et al. Racial/ethnic disparities in client unilateral termination: the role of therapists’ cultural comfort. Psychother. Res. 27, 102–111 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Melfi, C. A., Croghan, T. W., Hanna, M. P. & Robinson, R. L. Racial variation in antidepressant treatment in a medicaid population. J. Clin. Psychiat. 61, 16–21 (2000).

    Article 

    Google Scholar 

  • Ward, E. C. Examining differential treatment effects for depression in racial and ethnic minority women: a qualitative systematic review. J. Natl Med. Assoc. 99, 265–274 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gregory, V. L. Cognitive–behavioral therapy for depressive symptoms in persons of African descent: a meta-analysis. J. Soc. Serv. Res. 42, 113–129 (2016).

    Article 

    Google Scholar 

  • Cuijpers, P. et al. A meta-analysis of cognitive–behavioural therapy for adult depression, alone and in comparison with other treatments. Can. J. Psychiat. 58, 376–385 (2013).

    Article 

    Google Scholar 

  • Wendt, D. C., Huson, K., Albatnuni, M. & Gone, J. P. What are the best practices for psychotherapy with indigenous peoples in the United States and Canada? A thorny question. J. Consult. Clin. Psychol. 90, 802–814 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Lorenzo-Luaces, L., Dierckman, C. & Adams, S. Attitudes and (mis)information about cognitive behavioral therapy on TikTok: an analysis of video content. J. Med. Internet Res. 25, e45571 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lorenzo-Luaces, L., Zimmerman, M. & Cuijpers, P. Are studies of psychotherapies for depression more or less generalizable than studies of antidepressants? J. Affect. Disord. 234, 8–13 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Grant, B. F. & Harford, T. C. Comorbidity between DSM-IV alcohol use disorders and major depression: results of a national survey. Drug Alcohol. Depend. 39, 197–206 (1995).

    Article 
    PubMed 

    Google Scholar 

  • Moher, D. et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 4, 1 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Appelbaum, M. et al. Journal article reporting standards for quantitative research in psychology: the APA Publications and Communications Board task force report. Am. Psychol. 73, 3–25 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Marshall, I. J. & Wallace, B. C. Toward systematic review automation: a practical guide to using machine learning tools in research synthesis. Syst. Rev. 8, 163 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marshall, I. J. et al. Trialstreamer: a living, automatically updated database of clinical trial reports. J. Am. Med. Inform. Assoc. 27, 1903–1912 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boness, C. L. et al. An evaluation of cognitive behavioral therapy for insomnia: a systematic review and application of Tolin’s criteria for empirically supported treatments. Clin. Psychol. Sci. Pract. 27, e12348 (2020).

    Article 

    Google Scholar 

  • Boness, C. L. et al. The Society of Clinical Psychology’s manual for the evaluation of psychological treatments using the Tolin criteria. Preprint at OSFPreprints (2022).

    Article 

    Google Scholar 

  • Eysenbach, G. & Consort-Ehealth Group. CONSORT-EHEALTH: improving and standardizing evaluation reports of web-based and mobile health interventions. J. Med. Internet Res. 13, e126 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Uhlmann, E. L. et al. Scientific utopia III: crowdsourcing science. Perspect. Psychol. Sci. 14, 711–733 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Ebersole, C. R. et al. Many Labs 3: evaluating participant pool quality across the academic semester via replication. J. Exp. Soc. Psychol. 67, 68–82 (2016).

    Article 

    Google Scholar 

  • Byers-Heinlein, K. et al. Building a collaborative psychological science: lessons learned from ManyBabies 1. Can. Psychol. 61, 349–363 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moshontz, H. et al. The psychological science accelerator: advancing psychology through a distributed collaborative network. Adv. Meth. Pract. Psychol. Sci. 1, 501–515 (2018).

    Article 

    Google Scholar 

  • Tsuji, S., Bergmann, C. & Cristia, A. Community-augmented meta-analyses: toward cumulative data assessment. Perspect. Psychol. Sci. 9, 661–665 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Boutron, I. et al. The COVID-NMA project: building an evidence ecosystem for the COVID-19 pandemic. Ann. Intern. Med. 173, 1015–1017 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Sutherland, W. J. Building a tool to overcome barriers in research-implementation spaces: the conservation evidence database. Biol. Conserv. 238, 108199 (2019).

    Article 

    Google Scholar 

  • Vuorre, M. & Curley, J. P. Curating research assets: a tutorial on the git version control system. Adv. Meth. Pract. Psychol. Sci. 1, 219–236 (2018).

    Article 

    Google Scholar 

  • Moshontz, H., Ebersole, C. R., Weston, S. J. & Klein, R. A. A guide for many authors: writing manuscripts in large collaborations. Soc. Personal. Psychol. Compass 15, e12590 (2021).

    Article 

    Google Scholar 

  • Tennant, J. P., Bielczyk, N., Tzovaras, B. G., Masuzzo, P. & Steiner, T. Introducing massively open online papers (MOOPs). KULA 4, 63 (2020).

    Article 

    Google Scholar 

  • Holcombe, A. O. Contributorship, not authorship: use credit to indicate who did what. Publications 7, 48 (2019).

    Article 

    Google Scholar 

  • Pierce, H. H., Dev, A., Statham, E. & Bierer, B. E. Credit data generators for data reuse. Nature 570, 30–32 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Graham, I. D. et al. Lost in knowledge translation: time for a map? J. Contin. Educ. Health Prof. 26, 13–24 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Higgins, J. P. T. & Thompson, S. G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Jones, A. Multidisciplinary team working: collaboration and conflict. Int. J. Ment. Health Nurs. 15, 19–28 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Hall, K. L. et al. The science of team science: a review of the empirical evidence and research gaps on collaboration in science. Am. Psychol. 73, 532–548 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Mavridis, D. & White, I. R. Dealing with missing outcome data in meta‐analysis. Res. Synth. Meth. 11, 2–13 (2020).

    Article 

    Google Scholar 

  • Enders, C. K. Applied Missing Data Analysis (Guilford Press, 2022).

  • Schauer, J. M., Diaz, K., Pigott, T. D. & Lee, J. Exploratory analyses for missing data in meta-analyses and meta-regression: a tutorial. Alcohol Alcohol. 57, 35–46 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Schauer, J. M., Lee, J., Diaz, K. & Pigott, T. D. On the bias of complete‐ and shifting‐case meta‐regressions with missing covariates. Res. Synth. Meth. 13, 489–507 (2022).

    Article 

    Google Scholar 

  • Schleider, J. L. The fundamental need for lived experience perspectives in developing and evaluating psychotherapies. J. Consult. Clin. Psychol. 91, 119–121 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Ramadier, T. Transdisciplinarity and its challenges: the case of urban studies. Futures 36, 423–439 (2004).

    Article 

    Google Scholar 

  • MacLeod, M. What makes interdisciplinarity difficult? Some consequences of domain specificity in interdisciplinary practice. Synthese 195, 697–720 (2018).

    Article 

    Google Scholar 

  • Mazzocchi, F. Scientific research across and beyond disciplines: challenges and opportunities of interdisciplinarity. EMBO Rep. 20, e47682 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bauer, H. H. Barriers against interdisciplinarity: implications for studies of science, technology, and society (STS). Sci. Technol. Hum. Values 15, 105–119 (1990).

    Article 

    Google Scholar 

  • Tourani, P., Adams, B. & Serebrenik, A. Code of conduct in open source projects. In 2017 IEEE 24th Int. Conf. on Software Analysis, Evolution and Reengineering (SANER) 24–33 (IEEE, 2017).

  • Strack, F. Reflection on the smiling registered replication report. Perspect. Psychol. Sci. 11, 929–930 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Norris, P. Cancel culture: myth or reality? Polit. Stud. 71, 145–174 (2021).

    Article 

    Google Scholar 

  • Baumgartner, H. A. et al. How to build up big team science: a practical guide for large-scale collaborations. R. Soc. Open. Sci. 10, 230235 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Michelson, M. & Reuter, K. The significant cost of systematic reviews and meta-analyses: a call for greater involvement of machine learning to assess the promise of clinical trials. Contemp. Clin. Trials Commun. 16, 100443 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dicks, L. V., Walsh, J. C. & Sutherland, W. J. Organising evidence for environmental management decisions: a ‘4S’ hierarchy. Trends Ecol. Evol. 29, 607–613 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Maseroli, E. et al. Outcome of medical and psychosexual interventions for vaginismus: a systematic review and meta-analysis. J. Sex. Med. 15, 1752–1764 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Kothari, A., McCutcheon, C. & Graham, I. D. Defining integrated knowledge translation and moving forward: a response to recent commentaries. Int. J. Health Policy Manag. 6, 299–300 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Franconeri, S. L., Padilla, L. M., Shah, P., Zacks, J. M. & Hullman, J. The science of visual data communication: what works. Psychol. Sci. Publ. Interest 22, 110–161 (2021).

    Article 

    Google Scholar 

  • Fitzgerald, K. G. & Tipton, E. The meta-analytic rain cloud plot: a new approach to visualizing clearinghouse data. J. Res. Educ. Eff. 15, 848–875 (2022).

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *